
ECE 307 © 2005 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 1

ECE 307 – Techniques for Engineering 
Decisions

Lecture 8a. Dynamic Programming

George Gross
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign



ECE 307 © 2005 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 2

 Systematic approach to solving sequential decision 

making problems

 Salient problem characteristic: ability to separate

the problem into stages

 Multi-stage problem solving technique

DYNAMIC  PROGRAMMING
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 We consider the problem to consist of multiple

separable stages

 A stage is a “point” in time, space, geographic 

location or a structural element at which we make  

a decision; each stage is associated with one or 

more states

 A state of the system describes a possible 

configuration of the system in a given stage

STAGES AND  STATES
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STAGES AND  STATES
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 A decision in the stage n transforms the state in 

the stage n into the state in the stage n + 1

 The state and the decision have an impact on 

the objective function; the effect is measured in 

terms of the return function denoted by 

 The optimal decision at stage n is the decision

that optimizes the return function for the state

RETURN  FUNCTION

ns

ns
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RETURN  FUNCTION
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 A poor student is traveling from NY to LA

 To minimize costs, the student plans to sleep at 

friends’ houses each night in cities along the trip

 Based on past experience he can reach

 Columbus, Nashville or Louisville after 1 day

 Kansas City, Omaha or Dallas after 2 days

 San Antonio or Denver after 3 days

 LA after 4 days

ROAD  TRIP  EXAMPLE
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ROAD  TRIP  EXAMPLE
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 The student wishes to minimize the number of 

miles driven and so he wishes to determine the 

shortest path from NY to LA

 To solve the problem, he works backwards

 We adopt the following notation

c i , j = distance between states i and  j

f k ( i ) = distance of the shortest path to 

LA from state i in the stage k

ROAD TRIP
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ROAD  TRIP  EXAMPLE  CALCULATIONS
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ROAD  TRIP  EXAMPLE  CALCULATIONS
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ROAD  TRIP  EXAMPLE

 The shortest path is 2,870 miles and corresponds 
to the trajectory  { ( 1, 2 ) , ( 2, 5 ) , ( 5, 8 ) , ( 8, 10 ) } ,
i.e., from NY, the student reaches Columbus on 
the first day, Kansas City on the second day, 
Denver the third day and then LA

 Every other trajectory to LA leads to higher costs 
and so is, by definition, suboptimal
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 There are 30 matches on a table and 2 players

 Each player can pick up 1, 2, or 3 matches and  

continue until the last match is picked up

 The loser is the person who picks up the last match 

 How can the player  P 1 , who goes first, ensure to 

be the winner?

PICK  UP  MATCHES  GAME
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WORKING  BACKWARDS: PICK  UP
MATCHES GAME

 We solve this problem by reasoning in a back-

wards fashion so as to ensure that when a single 

match remains,  P 2 has the turn

 Consider the situation where  5 matches remain 

and it is P 2’s turn; for P 1 to win, we consider all 

possible situations:
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 We can reason similarly for the cases of 9, 13, 17, 
21, 25, and 29 matches

 Therefore,  P 1 wins if  P 1 picks 30 – 29 = 1 match 
in the first move

 In this manner, we can assure a win for any 
number of matches in the game

WORKING  BACKWARDS: PICK  UP
MATCHES GAME

3      2 left       P 1 removes 1

1      4 left       P 1 removes 3

2      3 left       P 1 removes 2

⇒

⇒

⇒

P 2’s move 

is to pick



ECE 307 © 2005 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 16

OIL  TRANSPORT  TECHNOLOGY

oil         
storage

substations
final  

destinations

intermediate 
region
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 We consider the development of a transport 

network from the north slope of Alaska to one of 6

possible shipping points in the US

 The network must meet the problem feasibility 

requirements

 7 pumping stations from a north slope ground 

storage plant to a shipping port

OIL  TRANSPORT  TECHNOLOGY
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 use of only those paths that are physically

and environmentally feasible

 Objective: determine a feasible pumping 

configuration that minimizes the

OIL  TRANSPORT  TECHNOLOGY

construction costs of branches 
total

= of network of the feasible
costs

 pumping configuration               ∑
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 Possible approaches to solving such a problem 
include:
 enumeration: exhaustive evaluation of all 

possible paths, which is too costly since there 
are more than 100 possible paths for this small 
size problem

 myopic decision rule: at each node, pick as the 
next node the one reachable by the cheapest 
path (in case of ties the pick is arbitrary); we 
show a possible path

OIL  TRANSPORT  TECHNOLOGY
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OIL  TRANSPORT  TECHNOLOGY

0 3 11 15 19 25 29 31 36
oil

storage
I-E II-E III-D IV-E V-C VI-D VII-C B

but, such a path is not unique and cannot be 

guaranteed to be optimal

 serial dynamic programming (DP ) : we need to 

construct the problem solution by defining the 

stages, states and decisions
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DP SOLUTION
 We define an intermediate stage to represent each 

pumping region and so each such stage

corresponds to the set of vertical nodes in 
regions

 We also define a stage of final destinations and 
the initial stage for oil storage

 We use backwards recursion: we start from every 
final destination and work backwards to the oil 
storage stage

I, II, . . . , VII
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 We define a state to denote a final destination, a 

specific pumping station in the intermediate 

regions or the oil storage tank with all the oil

 A decision refers to the selection of the branch 

from each  state , so there are at most three 

choices for a decision :

DP SOLUTION

ks

L F R↔ ↔ ↔ left forward right
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DP SOLUTION

 The return function is defined as the costs 

associated with the decision for the state

 The transition function is the total costs in  

proceeding from a state        in stage to 

another state      in stage

 We solve the problem by iteratively moving

backwards, starting from each final state to the states

in stage 1 and so on, until we reach the oil storage

1k +

 ,  ,  1, ... , 7k k 0=

ks

1ks +

ks
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DP SOLUTION:  STAGE 1  REGION  VII 
TO  A  FINAL  DESTINATION
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DP SOLUTION:
STAGE 2 REGION VI  TO  STAGE 1
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STAGE 2  CALCULATION

a function of only s 1

for a given  d 2 ,  the state s 1 is set
⇓

costs of proceeding from the 
state s 2 to a state s 1 in stage 1
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DP SOLUTION:
STAGE 3 REGION  V  TO STAGE 2

cu
m

ul
at

iv
e 

co
st

s i
n 

pr
oc

ee
di

ng
 

fr
om

 th
e 

st
at

e 
 s

3
to

 a
 fi

na
l 

de
st

in
at

io
nR L F

A 14 16 R 14

B 14 17 15 R 14

C 10 5 13 R 10

D 9 12 9 R, F 9

E 12 15 L 12



ECE 307 © 2005 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 28

DP SOLUTION:
STAGE 4 REGION  IV  TO STAGE 3
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DP SOLUTION:
STAGE 5 REGION  III  TO STAGE 4 
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DP SOLUTION:
STAGE 6 REGION  II  TO  STAGE 6
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DP SOLUTION:
STAGE 6 REGION  II  TO  STAGE 6
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 The last stage consists of only 1 state – the oil storage

 To find the optimal trajectory, we retrace in the 
forward direction and go through the stages 7, 6,   . .   
, 1  to get the least–cost trajectory that terminates in 
shipping point D

THE  OPTIMAL TRAJECTORY

A B C D E

f 8 (s 8) 33 30 32 33 30 B,E 30

s 8 f s8 8( )∗
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 Besides this optimal solution, other trajectories 

are possible since the path need not be unique 

but no path yields a shorter total distance

THE  OPTIMAL TRAJECTORY

II – B

II – C

II – F

III – C

III – B 

III – E

IV –C

IV – B

IV – E 

VI – E

V – D VI – D VII – D

V – C

I – B

I – E

oil 
storage

shipping 
point D
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OIL  TRANSPORT  PROBLEM  
SOLUTION

 We obtain the diagram below by retracing the 

steps of proceeding to an endpoint at each stage

 The solution

 provides all the optimal trajectories

 is based on logically breaking up the problem 

into stages with calculations in each stage being 

a function of the number of states in that stage

 provides also all the suboptimal paths
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OIL  TRANSPORT  PROBLEM  
SOLUTION
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OIL  TRANSPORT  PROBLEM  
SOLUTION

 For example, we may calculate the least cost 

optimal path to any sub – optimal shipping point   

different than D

 From the solution, we can also determine the sub–

optimal path if the construction of a feasible path 

is not undertaken
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OIL  TRANSPORT: SENSITIVITY  CASE

 Consider the case where we got to stage VI but 
the branch VI – D to VII – D cannot be built due to 
some newly–enacted environmental constraint       

 We then determine the least–cost path from VI –
D to find the final destination D whose value is 9
instead of 6

VI – D VII – C
final 

destination
D

72

and so the sub optimal cost solution costs are 33
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FACILITIES  SELECTION  PROBLEM

 A company is expanding to meet a wider market 

and considers:

 3 location alternatives

 4 different building types (sizes) at each site

 Revenues – meaning net revenues or profits – and 

costs vary with each location and building type



ECE 307 © 2005 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 39

FACILITIES  SELECTION  PROBLEM
 Revenues  R increase monotonically with building 

size 

 Costs C  also increase monotonically with building 

size

 The data for building sizes and the associated 

revenues and costs are given in the table below



ECE 307 © 2005 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 40

FACILITIES  SELECTION  PROBLEM

building size

site
B 1 B 2 B 3 B 4 none

R 1 c 1 R 2 c 2 R 3 c 3 R 4 c 4 R 0 c 0

I 0.50 1 0.65 2 0.8 3 1.4 5 0 0

II 0.62 2 0.78 5 0.96 6 1.8 8 0 0

III 0.71 4 1.2 7 1.6 9 2 11 0 0
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FACILITIES  SELECTION  PROBLEM

 The company investment budget is limited to $ 21  

million for the total expansion project

 The goal is to determine the optimal expansion 

policy, i.e., the buildings to be built at each site
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DP SOLUTION  APPROACH

 We use the DP approach to solve this problem, but 

first, we must define the DP structure elements

 For the facilities siting problem, we realize that 

absent the choice of a site, the building type is 

irrelevant and so the elements that control the 

entire decision process are the building sites
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DP SOLUTION  APPROACH
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DP SOLUTION  APPROACH

 We use backwards DP to solve the problem and 

start with site I         stage 1 , a purely arbitrary 

choice, where this stage 1 represents the last 

decision in the 3 – stage sequence and so is made 

after the decision for the other two sites have 

been taken

↔
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 The amount of funds available is unknown since 

the decision at sites II and III are already made, 

and so

 There are no additional decisions to be made in 

stage 0 and we define

DP SOLUTION  APPROACH

0 s 1 21≤ ≤

0 00s 00 sf             ( )∗ == and
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DP SOLUTION  APPROACH

 We start with stage 1 and move backwards to stages

2 and 3

 As we move backwards from stage (n – 1) to stage n,

as a result of the decision d n , the funds available 

for construction in stage (n – 1) are          

n nns s c1− = −  
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DP SOLUTION  APPROACH

 The recursion relation is given by
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DP SOLUTION:  STAGE 1 SITE  I

0 1 2 3 4

0 .50 .65 .80 1.40 4 1.40

0 .50 .65 .80 3 .80

2 0 .50 .65 2 .65

1 0 .50 1 .50

0 0 0 0 0 0 0 0

s 121 5≥ ≥

f s1 1( )∗
s 1

s 14 3≥ ≥
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DP SOLUTION:  STAGE 2 SITE  II

 The amount of funds  s 2 available is unknown 

since the decision at site III is already made

 The value of  d 2 is a function of s 2 and we 

construct a decision table using

where

cs s 21 2 −=
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DP SOLUTION:  STAGE 2 SITE  II

0 1 2 3 4
1.40 2.02 2.18 2.36 3.20 4 3.20

12 1.40 2.02 2.18 2.36 2.60 4 2.60
11 1.40 2.02 2.18 2.36 2.60 4 2.60
10 1.40 2.02 2.18 1.76 2.45 4 2.45
9 1.40 2.02 1.58 1.61 2.30 4 2.30
8 1.40 2.02 1.58 1.61 1.80 1 2.02
7 1.40 2.02 1.43 1.46 1 2.02
6 1.40 1.42 1.28 0.96 1 1.42
5 1.40 1.42 0.78 1 1.42
4 0.80 1.27 1 1.27
3 0.80 1.12 1 1.12
2 0.65 0.62 0 0.65
1 0.50 0 0.50
0 0.00 0 0.00

s 2
f s

2 2
( )∗

s 221 13≥ ≥
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SAMPLE  CALCULATIONS

 Consider the case s 2 =  10  and d 2 =  0 ; then,

c 2 =  0 and   R 2 =  0 

and so,  

s 1 =  10 and            

 Therefore,

and consequently, 

sf 11 ( ) 1.4∗ =
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SAMPLE  CALCULATIONS

 Consider next the case s 2 = 10  and d 2 = 4 ; then,
c 2 =  8  and  R 2 =  1.8 

and so,
s 1 =  2 

so that 

 Consequently,   
f 2  (s 2)  =  2.45 

which we can show is the optimal value, so that
f s 22 ( ) 2.45∗ =

11 ( ) 0.65sf ∗ =
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DP SOLUTION  :  STAGE 3 SITE III

 At stage 3 , the first decision is actually taken and 

so exactly 21 million is available and  s 3 = 21

 We compute the elements in the table using

where
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OPTIMAL SOLUTION

 Optimal profits are 4.45 million and the optimal path 

is obtained by retracing the steps from stage 3 to 

stage 1 in the forward direction:

0 1 2 3 4

21 3.20 3.91 4.40 4.20 4.45 4 4.45

3
*
3 ( )f s3s
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OPTIMAL SOLUTION
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A  SENSITIVITY  CASE

 We next consider the case where the maximum 

investment available is 15 million

 By inspection, the results in stages 1 and 2 remain 

unchanged; however, we must recompute stage 3

results with the 15 million limit

0 1 2 3 4

15 3.2 3.31 3.22 3.02 3.27 1 3.31

3
*
3 ( )f s3s
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SENSITIVITY  CASE

 The optimal solution obtains maximum profits of 

3.31 million and the decision is as follows:
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