ECE 307 – Techniques for Engineering Decisions

Lecture 8a. Dynamic Programming

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

DYNAMIC PROGRAMMING

☐ Systematic approach to solving sequential decision

making problems

☐ Salient problem characteristic: ability to *separate*

the problem into stages

☐ *Multi-stage* problem solving technique

STAGES AND STATES

- ☐ We consider the problem to consist of *multiple*separable stages
- □ A stage is a "point" in time, space, geographic location or a structural element at which we make a decision; each stage is associated with one or more states
- □ A *state* of the system describes a possible configuration of the system in a given *stage*

STAGES AND STATES

RETURN FUNCTION

- \square A decision d_n in the stage n transforms the state s_n in the stage n into the state s_{n+1} in the stage n+1
- \square The state s_n and the decision d_n have an impact on
 - the objective function; the effect is measured in
 - terms of the *return function* denoted by $r_n(s_n, d_n)$
- \square The optimal decision at stage n is the decision d_n^*
 - that optimizes the return function for the state s_n

RETURN FUNCTION

ROAD TRIP EXAMPLE

- □ A poor student is traveling from NY to LA
- ☐ To minimize costs, the student plans to sleep at friends' houses each night in cities along the trip
- ☐ Based on past experience he can reach
 - O Columbus, Nashville or Louisville after 1 day
 - O Kansas City, Omaha or Dallas after 2 days
 - O San Antonio or Denver after 3 days
 - O LA after 4 days

ROAD TRIP EXAMPLE

day 1 day 2 day 3 day 4

ROAD TRIP

- ☐ The student wishes to minimize the number of miles driven and so he wishes to determine the shortest path from NY to LA
- ☐ To solve the problem, he works *backwards*
- We adopt the following notation
 - $c_{i,j}$ = distance between *states* i and j
 - $f_k(i)$ = distance of the shortest path to

LA from state i in the stage k

ROAD TRIP EXAMPLE CALCULATIONS

day 4:
$$f_4(8) = c_{8,10} = 1,030$$
 $f_4(9) = c_{9,10} = 1,390$

$$day 3: f_3(5) = min \left\{ \underbrace{(610+1,030),(790+1,390)}_{1,640} \right\} = 1,640$$

ROAD TRIP EXAMPLE CALCULATIONS

day 2:

$$f_{2}(2) = min \left\{ \underbrace{(680+1,640),(790+1,570),(1,050+1,660)}_{2,320} \right\} = 2,320$$

$$f_{2}(3) = min \left\{ \underbrace{(580+1,640),(760+1,570),(660+1,660)}_{2,220} \right\} = 2,220$$

$$f_{2}(4) = min \left\{ \underbrace{(510+1,640),(700+1,570),(830+1,660)}_{2,150} \right\} = 2,150$$

ROAD TRIP EXAMPLE

day 1: $f_{1}(1) = min \left\{ \underbrace{(550 + 2,320), (900 + 2,220), (770 + 2,150)}_{*2.870*} \right\} = 2,870$

- □ The shortest path is 2,870 miles and corresponds to the trajectory { (1,2),(2,5),(5,8),(8,10) }, i.e., from NY, the student reaches Columbus on the first day, Kansas City on the second day, Denver the third day and then LA
- □ Every other trajectory to LA leads to higher costs and so is, by definition, suboptimal

PICK UP MATCHES GAME

- ☐ There are 30 matches on a table and 2 players
- ☐ Each player can pick up 1, 2, or 3 matches and
 - continue until the last match is picked up
- ☐ The loser is the person who picks up the *last match*
- \square How can the player P_1 , who goes first, ensure to

be the winner?

WORKING BACKWARDS: PICK UP MATCHES GAME

☐ We solve this problem by reasoning in a back-

wards fashion so as to ensure that when a single

match remains, P_2 has the turn

☐ Consider the situation where 5 matches remain

and it is P_2 's turn; for P_1 to win, we consider all

possible situations:

WORKING BACKWARDS: PICK UP MATCHES GAME

- ☐ We can reason similarly for the cases of 9, 13, 17,21, 25, and 29 matches
- □ Therefore, P_1 wins if P_1 picks 30 29 = 1 match in the first move
- ☐ In this manner, we can assure a win for any number of matches in the game

16

- \square We consider the development of a transport network from the north slope of Alaska to one of 6 possible shipping points in the US
- ☐ The network must meet the problem feasibility requirements
 - 7 pumping stations from a north slope ground storage plant to a shipping port

- use of only those paths that are physically and environmentally feasible
- Objective: determine a feasible pumping

configuration that minimizes the

construction costs of branches of network of the feasible pumping configuration

- □ Possible approaches to solving such a problem include:
 - O enumeration: exhaustive evaluation of all possible paths, which is too costly since there are more than 100 possible paths for this small size problem
 - O myopic decision rule: at each node, pick as the next node the one reachable by the cheapest path (in case of ties the pick is arbitrary); we show a possible path

storage

but, such a path is not unique and cannot be guaranteed to be *optimal*

O serial dynamic programming (DP): we need to construct the problem solution by defining the

stages, states and decisions

DP SOLUTION

- □ We define an intermediate stage to represent each pumping region and so each such stage corresponds to the set of vertical nodes in regions I, II,..., VII
- ☐ We also define a stage of final destinations and the initial stage for oil storage
- ☐ We use *backwards recursion*: we start from every final destination and work *backwards* to the oil storage *stage*

DP SOLUTION

- \square We define a *state* S_k to denote a final destination, a specific pumping station in the intermediate regions or the oil storage tank with all the oil
- \square A decision refers to the selection of the branch from each *state* S_k , so there are at most three choices for a *decision* d_k :
- $L \leftrightarrow left$

 $F \leftrightarrow forward$

 $R \leftrightarrow \text{right}$

DP SOLUTION

- The return function $r_k(s_k, d_k)$ is defined as the costs associated with the decision d_k for the state s_k
- ☐ The transition function is the total costs in
 - proceeding from a state s_{k+1} in stage k+1 to
 - another state S_k in stage k, k = 0, 1, ..., 7
- We solve the problem by iteratively moving
 - backwards, starting from each final state to the states
 - in stage 1 and so on, until we reach the oil storage

DP SOLUTION: STAGE 1 \longleftrightarrow REGION VII TO A FINAL DESTINATION

optimal decision								
C		d ₁		<i>d</i> *	$f_{1}^{*}(s_{1})$			
S ₁	R	$oldsymbol{L}$	F	1	$J_1 \begin{pmatrix} s_1 \end{pmatrix}$			
\boldsymbol{A}	7			R	7			
В	6		3	$oldsymbol{F}$	3			
C	7	5	6	L	5			
D	6	5	3	$oldsymbol{F}$	3			
E	7	8	5	F	5			
$oldsymbol{F}$	4	2	6	$oldsymbol{L}$	2			

optimal return

> least costs in proceeding Final destination from the

DP SOLUTION: STAGE 2 ↔ REGION VI TO STAGE 1

		(optim	al deci: 	sion _	<u>5</u> 0	
		d 2		d *	$f^*_{2}(s_2)$	cumulative costs in proceeding from the state s_2 to a final	
S ₂	R	L	$oldsymbol{F}$	2	$J_{2}(S_{2})$	roce o a	
$oldsymbol{A}$	10		12	R	10		tion
В	9	12	7	\boldsymbol{F}	7	costs state	destination
C	5	6	7	R	5	ve co	des
D	8	7	6	\boldsymbol{F}	6	umulative from the	
E	7	6	11	\boldsymbol{L}	6	um: fro	

STAGE 2 CALCULATION

costs of proceeding from the state s_2 to a state s_1 in stage 1

$$f_{2}^{*}(s_{2}) = \min_{d_{2}} \left(r_{2}(s_{2}, d_{2}) + f_{1}^{*}(s_{1})\right)$$

a function of only s₁

for a given d_2 , the state s_1 is set

destination

DP SOLUTION: STAGE 3 ↔ REGION V TO STAGE 2

$f_{3}^{*}(s_{3}) = \min_{d_{3}} \left\{ r_{3}(s_{3}, d_{3}) + f_{2}^{*}(s_{2}) \right\}$ $g_{3} = \frac{d_{3}}{R} \frac{d_{3}}{R} f_{3}^{*}(s_{3})$ $\frac{d_{3}}{R} \frac{d_{3}}{R} f_{3}^{*}(s_{3})$ $\frac{d_{3}}{R} \frac{d_{3}}{R} f_{3}^{*}(s_{3})$ $\frac{d_{3}}{R} \frac{d_{3}}{R} \frac{f_{3}^{*}(s_{3})}{R} \frac{g_{3}^{*}(s_{3})}{R} \frac{g_{3}^{*}(s_{3$									
2		d_3		<i>A</i> *	f * (c)	in proceedin s ₃ to a final			
S ₃	R	L	F	d_{3}^{*}	$f_{3}^{*}(s_{3})$	i pro			
$oldsymbol{A}$	14		16	R	14	sts in			
В	14	17	15	R	14	e cos			
C	10	5	13	R	10	lativ ı the			
D	9	12	9	<i>R</i> , <i>F</i>	9	umulative costs from the state			
E		12	15	$oldsymbol{L}$	12	c_{ι}			

DP SOLUTION: STAGE 4↔ REGION IV TO STAGE 3

 $f_{4}^{*}(s_{4}) = \min_{d_{4}} \left\{ r_{4}(s_{4}, d_{4}) + f_{3}^{*}(s_{3}) \right\}$ cumulative costs in proceeding from the state s₄ to a final **S**₄ destination 18 **17** B **17** 23 R \boldsymbol{C} **15 15** 22 **16** R **16** D \boldsymbol{F} 18 **17 16 16** E **16** 21

DP SOLUTION:

STAGE 5 ↔ REGION III TO STAGE 4

$$f_{5}^{*}(s_{5}) = \min_{d_{5}} \left\{ r_{5}(s_{5}, d_{5}) + f_{4}^{*}(s_{4}) \right\}$$

$$S_{5} = \frac{d_{5}}{R} \quad L \quad F$$

$$\frac{d_{5}}{F} \quad S_{5}(s_{5})$$

$$\frac{d_{5}}{R} \quad L \quad F$$

$$\frac{d_{5}}{F} \quad S_{5}(s_{5})$$

$$\frac{$$

l.

29

DP SOLUTION: STAGE 6 ↔ REGION II TO STAGE 6

$$f_{6}^{*}(s_{6}) = \min_{d_{6}} \{r_{6}(s_{6}, d_{6}) + f_{5}^{*}(s_{5})\}$$

	<u> </u>				
C		d_{6}		d_{6}^{*}	$f^*_{6}(s_6)$
S 6	R	L	\boldsymbol{F}	6	J 6 (3 6)
$oldsymbol{A}$	25		24	$oldsymbol{F}$	24
В	21	25	24	R	21
<i>C</i>	28	21	23	L	21
D	27	26	29	L	26
E	26	23	22	\boldsymbol{F}	22
F		18	23	L	18

cumulative costs in proceeding from the state s₆ to a final

destination

DP SOLUTION: STAGE 6 ↔ REGION II TO STAGE 6

$f_{7}^{*}(s_{7}) = \min_{d_{7}} \{r_{7}(s_{7}, d_{7}) + f_{6}^{*}(s_{6})\}$									
G		d ₇	,	d^*_{7}	$f^*_{7}(s_7)$				
S 7	R	L	F	7	J 7 (87)				
$oldsymbol{A}$	27		32	R	27				
В	26	33	26	R,F	26				
C	34	25	27	$oldsymbol{L}$	25				
D	25	27	33	R	25				
E	27	35	30	R	27				

cumulative costs in proceeding to a fina from the state

THE OPTIMAL TRAJECTORY

☐ The last *stage* consists of only 1 *state* – the oil storage

S 8 8	\boldsymbol{A}	В	C	D	E	<i>d</i> * ₈	$f^*_{8}(s_8)$
$f_8(s_8)$	33	30	32	33	30	B , E	30

$$f_{8}^{*}(s_{8}) = min\{27+6,26+4,25+7,25+8,27+3\}=30$$

☐ To find the *optimal* trajectory, we retrace in the forward direction and go through the *stages* 7, 6, ..., 1 to get the least—cost trajectory that terminates in

shipping point D

THE OPTIMAL TRAJECTORY

□ Besides this *optimal* solution, other trajectories are possible since the path need not be unique

but no path yields a shorter total distance

OIL TRANSPORT PROBLEM SOLUTION

- □ We obtain the diagram below by retracing the steps of proceeding to an endpoint at each stage
- ☐ The solution
 - O provides all the optimal trajectories
 - is based on logically breaking up the problem into *stages* with calculations in each *stage* being a function of the number of *states* in that *stage*
 - O provides also all the *suboptimal paths*

OIL TRANSPORT PROBLEM SOLUTION

OIL TRANSPORT PROBLEM SOLUTION

☐ For example, we may calculate the least cost

optimal path to any sub - optimal shipping point

different than D

 \Box From the solution, we can also determine the sub-

optimal path if the construction of a feasible path

is not undertaken

OIL TRANSPORT: SENSITIVITY CASE

- □ Consider the case where we got to stage VI but the branch VI D to VII D cannot be built due to some newly–enacted environmental constraint
- ☐ We then determine the least—cost path from VI = D to find the final destination D whose value is 9 instead of 6

and so the sub optimal cost solution costs are 33

- ☐ A company is expanding to meet a wider market
 - and considers:

- O 3 location alternatives
- O 4 different building types (sizes) at each site
- □ Revenues meaning *net revenues* or *profits* and
 - costs vary with each location and building type

□ Revenues R increase monotonically with building size
 □ Costs C also increase monotonically with building size

☐ The data for building sizes and the associated

revenues and costs are given in the table below

	building size										
site	\boldsymbol{B}_{1}		\boldsymbol{B}_{2}		B_3		B_4		none		
	R_{1}	c_{1}	R_2	c_2	R_3	c_3	R_4	c ₄	R_{0}	c_{0}	
I	0.50	1	0.65	2	0.8	3	1.4	5	0	0	
II	0.62	2	0.78	5	0.96	6	1.8	8	0	0	
III	0.71	4	1.2	7	1.6	9	2	11	0	0	

☐ The company investment budget is limited to \$ 21

million for the total expansion project

☐ The goal is to determine the *optimal* expansion

policy, i.e., the buildings to be built at each site

- \Box We use the DP approach to solve this problem, but
 - first, we must define the DP structure elements
- ☐ For the facilities siting problem, we realize that
 - absent the choice of a site, the building type is
 - irrelevant and so the elements that control the
 - entire decision process are the building sites

stage	\leftrightarrow	site
		amount of funds available
state	\leftrightarrow {	amount of funds available for construction
decision	\leftrightarrow	building type
return function	\leftrightarrow	revenues
transition function		impact of a decision on the available funds
iransilion junction		available funds

 \square We use backwards DP to solve the problem and

start with site I \leftrightarrow stage 1, a purely arbitrary

choice, where this stage 1 represents the last

decision in the 3-stage sequence and so is made

after the decision for the other two sites have

been taken

The amount of funds available is unknown since

the decision at sites II and III are already made,

and so

$$0 \leq s_1 \leq 21$$

☐ There are no additional decisions to be made in

stage 0 and we define

$$s_0 = 0$$
 and $f_0^*(s_0) = 0$

☐ We start with *stage* 1 and move backwards to *stages*

2 and 3

 \square As we move backwards from stage (n-1) to stage n,

as a result of the $decision d_n$, the funds available

for construction in stage (n-1) are

$$s_{n-1} = s_n - c_n \leftarrow costs of decision d_n$$

☐ The recursion relation is given by

$$f_{n}^{*}(s_{n}) = \max_{d_{n}} \{f_{n}(s_{n}, d_{n}) + f_{n-1}^{*}(s_{n-1})\}, n = 1, 2, 3$$

with

$$s_{n-1} = s_n - c_n$$

and

$$f_n(s_n, d_n) = r_n(s_n, d_n) = R_n$$

revenues for

decision d_n

DP SOLUTION: $STAGE 1 \leftrightarrow SITE I$

$$f_{1}^{*}(s_{1}) = \max_{0 \leq d_{1} \leq 4} \{r_{1}(s_{1}, d_{1})\}$$

s_1 d_1	0	1	2	3	4	d_{1}^{*}	$f_{1}^{*}(s_{1})$
$21 \ge s_1 \ge 5$	0	.50	.65	.80	1.40	4	1.40
$4 \ge s_1 \ge 3$	0	.50	.65	.80		3	.80
2	0	.50	.65			2	.65
1	0	.50				1	.50
0	0	0	0	0	0	0	0

DP SOLUTION: $STAGE 2 \leftrightarrow SITE II$

- \Box The amount of funds s_2 available is unknown since the decision at site III is already made
- \Box The value of d_2 is a function of s_2 and we construct a decision table using

$$f_{2}^{*}(s_{2}) = max$$
 { $r_{2}(s_{2}, d_{2}) + f_{1}^{*}(s_{1})$ } where

$$s_1 = s_2 - c_2$$

DP SOLUTION: $STAGE 2 \leftrightarrow SITE II$

S_2 d_2	0	1	2	3	4	d^*	$f^*_2(s_2)$
$21 \geq s_2 \geq 13$	1.40	2.02	2.18	2.36	3.20	4	3.20
12	1.40	2.02	2.18	2.36	2.60	4	2.60
11	1.40	2.02	2.18	2.36	2.60	4	2.60
10	1.40	2.02	2.18	1.76	2.45	4	2.45
9	1.40	2.02	1.58	1.61	2.30	4	2.30
8	1.40	2.02	1.58	1.61	1.80	1	2.02
7	1.40	2.02	1.43	1.46		1	2.02
6	1.40	1.42	1.28	0.96		1	1.42
5	1.40	1.42	0.78			1	1.42
4	0.80	1.27				1	1.27
3	0.80	1.12				1	1.12
2	0.65	0.62				0	0.65
1	0.50					0	0.50
0	0.00					0	0.00

SAMPLE CALCULATIONS

 \Box Consider the case $s_2 = 10$ and $d_2 = 0$; then,

$$c_2 = 0$$
 and $R_2 = 0$

and so,

$$s_1 = 10$$
 and $d_1^* = 4$

☐ Therefore,

$$f_{1}^{*}(s_{1}) = 1.4$$

and consequently,

$$f_{2}(s_{2}) = 1.4$$

SAMPLE CALCULATIONS

 \Box Consider next the case $s_2 = 10$ and $d_2 = 4$; then,

$$c_2 = 8$$
 and $R_2 = 1.8$

and so,

$$s_1 = 2$$

so that

$$f_{1}^{*}(s_{1}) = 0.65$$

□ Consequently,

$$f_2(s_2) = 2.45$$

which we can show is the optimal value, so that

$$f_{2}^{*}(s_{2}) = 2.45$$

DP SOLUTION: STAGE 3 \leftrightarrow SITE III

- ☐ At stage 3, the first decision is actually taken and
 - so exactly 21 million is available and $s_3 = 21$
- ☐ We compute the elements in the table using

$$f_{3}^{*}(s_{3}) = \max_{d_{3}} \{ r_{3}(s_{3}, d_{3}) + f_{2}^{*}(s_{2}) \}$$

where

$$s_2 = s_3 - c_3$$

OPTIMAL SOLUTION

S ₃			, *	C * ()			
	0	1	2	3	4	d_3	$f_3^*(s_3)$
21	3.20	3.91	4.40	4.20	4.45	4	4.45

□ *Optimal* profits are 4.45 million and the *optimal* path

is obtained by retracing the steps from stage 3 to

stage 1 in the forward direction:

OPTIMAL SOLUTION

 $d_3^* = 4 \leftrightarrow \text{construct } B_4 \text{ at site III}$

$$s_2 = s_3 - c_3 = 21 - 11 = 10$$

 $d_2^* = 4 \leftrightarrow \text{construct } B_4 \text{ at site II}$

$$s_1 = s_2 - c_2 = 10 - 8 = 2$$

 $d_1^* = 2 \leftrightarrow \text{construct } B_2 \text{ at site I}$

$$c_1 = 5$$
 and $c_1 + c_2 + c_3 = 21$

A SENSITIVITY CASE

- We next consider the case where the maximum investment available is 15 million
- ☐ By inspection, the results in *stages* 1 and 2 remain unchanged; however, we must recompute *stage* 3 results with the 15 million limit

Sa	d_3						f * (g)	
23	0	1	2	3	4	u_3	$f_3^*(s_3)$	
15	3.2	3.31	3.22	3.02	3.27	1	3.31	

SENSITIVITY CASE

☐ The *optimal* solution obtains maximum profits of

3.31 million and the decision is as follows:

 $d_3^* = 1 \leftrightarrow \text{construct } B_1 \text{ at site III}$

$$s_2 = s_3 - c_3 = 15 - 4 = 11$$

 $d_2^* = 4 \leftrightarrow \text{construct } B_4 \text{ at site II}$

$$s_1 = s_2 - c_2 = 11 - 8 = 3$$

 $d_1^* = 3 \leftrightarrow \text{construct } B_3 \text{ at site I}$

$$c_1 = 3$$
 and $c_1 + c_2 + c_3 = 15$